Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36976235

RESUMEN

The marine polyarsenical metabolite arsenicin A is the landmark of a series of natural and synthetic molecules characterized by an adamantane-like tetraarsenic cage. Arsenicin A and related polyarsenicals have been evaluated for their antitumor effects in vitro and have been proven more potent than the FDA-approved arsenic trioxide. In this context, we have expanded the chemical space of polyarsenicals related to arsenicin A by synthesizing dialkyl and dimethyl thio-analogs, the latter characterized with the support of simulated NMR spectra. In addition, the new natural arsenicin D, the scarcity of which in the Echinochalina bargibanti extract had previously limited its full structural characterization, has been identified by synthesis. The dialkyl analogs, which present the adamantane-like arsenicin A cage substituted with either two methyl, ethyl, or propyl chains, were efficiently and selectively produced and evaluated for their activity on glioblastoma stem cells (GSCs), a promising therapeutic target in glioblastoma treatment. These compounds inhibited the growth of nine GSC lines more potently than arsenic trioxide, with GI50 values in the submicromolar range, both under normoxic and hypoxic conditions, and presented high selectivity toward non-tumor cell lines. The diethyl and dipropyl analogs, which present favorable physical-chemical and ADME parameters, had the most promising results.


Asunto(s)
Adamantano , Neoplasias Encefálicas , Glioblastoma , Humanos , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre , Adamantano/uso terapéutico , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
2.
Eur J Med Chem ; 246: 114979, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36495628

RESUMEN

New therapeutic strategies for glioblastoma treatment, especially tackling the tumour's glioblastoma stem cell (GSC) component, are an urgent medical need. Recently, mitochondrial translation inhibition has been shown to affect GSC growth, clonogenicity, and self-renewal capability, therefore becoming an attractive therapeutic target. The combination of streptogramins B and A antibiotics quinupristin/dalfopristin (Q/D), which inhibits mitochondrial ribosome function, affects GSCs more effectively in vitro than the standard of care temozolomide. Here, docking calculations based on the cryo-EM structure of the Q/D-bound mitochondrial ribosome have been used to develop a series of streptogramin A derivatives. We obtained twenty-two new and known molecules starting from the dalfopristin and virginiamycin M1 scaffolds. A structure-activity relationship refinement was performed to evaluate the capability of these compounds to suppress GSC growth and inhibit mitochondrial translation, either alone or in combination with quinupristin. Finally, quantitative ultra HPLC-mass spectrometry allowed us to assess the cell penetration of some of these derivatives. Among all, the fluorine derivatives of dalfopristin and virginiamycin M1, (16R)-1e and (16R)-2e, respectively, and flopristin resulted in being more potent than the corresponding lead compounds and penetrating to a greater extent into the cells. We, therefore, propose these three compounds for further evaluation in vivo as antineoplastic agents.


Asunto(s)
Glioblastoma , Estreptograminas , Humanos , Estreptogramina A , Glioblastoma/tratamiento farmacológico , Antibacterianos/química , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína , Pruebas de Sensibilidad Microbiana
3.
J Environ Manage ; 320: 115910, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35947910

RESUMEN

Modern societies produce ever-increasing amounts of waste, e.g. organic fraction of municipal solid waste (OFMSW). According to the best available techniques, OFMSW should be treated through anaerobic digestion to recover biogas and subsequently composted. An innovative scheme is under investigation, where anaerobic digestion is combined with hydrothermal carbonization (HTC) and composting. The final product, referred to as hydrochar co-compost (HCO), is under study to be used as an unconventional soil improver/fertilizer. Recent studies showed that HCO is not phytotoxic. However, nothing is known about the toxicity of HCO on cells as part and organisms as a whole. This study aims to investigate in vitro genotoxicity and cytotoxicity of the HCO and its precursors in the production process. In particular, we tested water and methanolic extracts of HCO (WEHCO and MEHCO) from one side and methanolic extracts of hydrochar (MEH) and OFMSW digestate (MED) as well as liquor produced downstream HTC (HTCL) from the other side. Genotoxicity was investigated using cytokinesis-block micronucleus assay in Chinese Hamster Ovarian K1 (CHO-K1) cells. Cytotoxicity was tested in vitro against a panel of human cells line. Zebrafish embryo toxicity upon MEH treatment was also investigated. Results show that incubation of CHO-K1 cells with all the tested samples at different concentrations did not cause any induction of micronucleus formation compared to the vehicle-treated control. Treatment of cells with MEH, MED, HTCL and MEHCO, but not WEHCO, induced some degree of cytotoxicity and MEH showed to be more cytotoxic against tested cells compared to the MEHCO. Toxicity effect at the highest tested concentrations of MEH on zebrafish embryos resulted in coagulation, induction of pericardial edema and death. In conclusion, the hydrochar co-compost cytotoxicity is similar to standard compost cytotoxicity. Hence composting the hydrochar from OFMSW digestate is a good step to eliminate the cytotoxicity of hydrochar.


Asunto(s)
Compostaje , Eliminación de Residuos , Anaerobiosis , Animales , Biocombustibles , Humanos , Eliminación de Residuos/métodos , Suelo , Residuos Sólidos , Pez Cebra
4.
Mol Nutr Food Res ; 66(21): e2101043, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35394679

RESUMEN

SCOPE: Epidemiological evidence suggests that a reduced risk of colorectal cancer (CRC) is correlated with high consumption of fruits and vegetables, which are major sources of fiber and phytochemicals, such as flavan-3-ols. However, it remains unknown how these phytochemicals and their specific gut-related metabolites may alter cancer cell behavior. METHODS AND RESULTS: A focused screening using native (poly)phenols and gut microbial metabolites (GMMs) on 3D HCT116 spheroids is carried out using a high-throughput imaging approach. Dose-responses, IC50 , and long-term exposure are calculated for the most promising native (poly)phenols and GMMs. As a result, this research shows that (poly)phenol catabolites may play a key role in preventing cancer propagation. Indeed, µM concentration levels of (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone significantly decrease spheroid size at early stages of spheroid aggregation and gene expression of matrix metalloproteinases. CONCLUSION: A chronic exposure to (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone may lead to a reduced CRC risk. Daily intake of monomeric, oligomeric, and polymeric flavan-3-ols may increase the colonic concentrations of this metabolite, and, in turn, this compound may act locally interacting with intestinal epithelial cells, precancerous and cancer cells.


Asunto(s)
Microbioma Gastrointestinal , Fenoles , Flavonoides/metabolismo , Polifenoles
5.
Viruses ; 14(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35215902

RESUMEN

Efficient, wide-scale testing for SARS-CoV-2 is crucial for monitoring the incidence of the infection in the community. The gold standard for COVID-19 diagnosis is the molecular analysis of epithelial secretions from the upper respiratory system captured by nasopharyngeal (NP) or oropharyngeal swabs. Given the ease of collection, saliva has been proposed as a possible substitute to support testing at the population level. Here, we used a novel saliva collection device designed to favour the safe and correct acquisition of the sample, as well as the processivity of the downstream molecular analysis. We tested 1003 nasopharyngeal swabs and paired saliva samples self-collected by individuals recruited at a public drive-through testing facility. An overall moderate concordance (68%) between the two tests was found, with evidence that neither system can diagnose the infection in 100% of the cases. While the two methods performed equally well in symptomatic individuals, their discordance was mainly restricted to samples from convalescent subjects. The saliva test was at least as effective as NP swabs in asymptomatic individuals recruited for contact tracing. Our study describes a testing strategy of self-collected saliva samples, which is reliable for wide-scale COVID-19 screening in the community and is particularly effective for contact tracing.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Prueba de Ácido Nucleico para COVID-19/normas , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/genética , Saliva/virología , COVID-19/diagnóstico , COVID-19/virología , Femenino , Humanos , Masculino , Tamizaje Masivo , Nasofaringe/virología , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos
6.
EMBO J ; 41(1): e105026, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791698

RESUMEN

Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.


Asunto(s)
Proteína C9orf72/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Dipéptidos/metabolismo , Proteolisis , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Codón Iniciador/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Drosophila/efectos de los fármacos , Demencia Frontotemporal/patología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/patología , Isoquinolinas/farmacología , Longevidad/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Biosíntesis de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Interferencia de ARN , Sulfonamidas/farmacología
7.
Nat Prod Res ; 35(17): 2910-2914, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31596142

RESUMEN

The pro-apoptotic property of n-BuOH extract of Limonium duriusculum (BEL) and its major isolated components [apigenin (APG1) and apigenin7-O-ß-D-(6''-methylglucuronide) (APG2)] were tested. The anti-proliferative IC50 of BEL and APG1 was quantified as 7.60 µg/mL and 25.74 µM respectively, while APG2 did not affect cell proliferation in HCT116 p53 wild type cells. Growth inhibition by BEL treatment was associated with reduced signaling from the MAP kinase, activation of the p53 response pathway and PARP cleavage. The multi-effect of Limonium duriusculum could be due through their major apigenin compounds and the other bioactive constituents that may possibly act in synergy to exercise the most favorable anti-tumor activities.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apigenina/farmacología , Apoptosis/efectos de los fármacos , Plumbaginaceae , Antineoplásicos Fitogénicos/aislamiento & purificación , Apigenina/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular , Células HCT116 , Humanos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Plumbaginaceae/química , Proteína p53 Supresora de Tumor
8.
Dev Biol ; 457(2): 215-225, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30998907

RESUMEN

Therapeutic approaches for cutaneous melanoma are flourishing, but despite promising results, there is an increasing number of reported primary or secondary resistance to the growing sets of drugs approved for therapy in the clinics. Combinatorial approaches may overcome resistance, as they may tackle specific weaknesses of melanoma cells, not sufficient on their own, but effective in combination with other therapies. The transgenic zebrafish line kita:ras develops melanoma with high frequency. At 3 dpf, transgenic kita:ras larvae show a hyperpigmentation phenotype as earliest evidence of abnormal melanocyte growth. Using this model, we performed a chemical screen based on automated detection of a reduction of melanocyte number caused by any of 1280 FDA or EMA approved drugs of the library. The analysis showed that 55 molecules were able to reduce by 60% or more the number of melanocytes per embryo. We further tested two compounds for each of the 5 classes, and a farnesyltransferase inhibitor (Lonafarnib), that inhibits an essential post-translational modification of HRAS and suppresses the hyperpigmentation phenotype. Combinations of Clotrimazole and Lonafarnib showed the most promising results in zebrafish embryos, allowing a dose reduction of both drugs. We performed validation of these observations in the metastatic human melanoma cell line A375M, and in normal human epithelial melanocytes (NHEM) in order to investigate the mechanism of action of Clotrimazole in blocking the proliferation of transformed melanocytes. Viability assay and analysis of energy metabolism in Clotrimazole treated cells show that this drug specifically affects melanoma cells in vitro and transformed melanocytes in vivo, having no effects on NHEM or wild type larvae. Similar effects were observed with another hit of the same class, Miconazole. Furthermore, we show that the effects of Clotrimazole are mediated by the inhibition of hexokinase activity, which is lethal to the abnormal metabolic profile of melanoma cells in vitro and in vivo. Thus, our study shows that the zebrafish can provide a phenotype-rich assay for fully automated screening approaches to identify drugs for synthetic lethal treatment in melanoma and suggest further testing of Clotrimazole in combinatorial treatments.


Asunto(s)
Antineoplásicos/farmacología , Clotrimazol/farmacología , Melanoma/tratamiento farmacológico , Piperidinas/farmacología , Piridinas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Animales Modificados Genéticamente , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales/métodos , Farnesiltransferasa/antagonistas & inhibidores , Humanos , Melanocitos/metabolismo , Melanoma/metabolismo , Miconazol/farmacología , Neoplasias Cutáneas/metabolismo , Pez Cebra , Melanoma Cutáneo Maligno
9.
J Neurochem ; 152(1): 136-150, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31264722

RESUMEN

The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.


Asunto(s)
Membrana Celular/química , Proteínas PrPC/análisis , Priones/antagonistas & inhibidores , Animales , Quinasa de la Caseína II/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes , Expresión Génica , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Harmalina/análogos & derivados , Harmalina/farmacología , Hematoxilina/análogos & derivados , Hematoxilina/farmacología , Humanos , Ratones , Neuroblastoma , Proteínas PrPC/genética , Priones/biosíntesis , Priones/toxicidad , Quinacrina/farmacología , Tacrolimus/farmacología
10.
Mol Cancer Ther ; 17(7): 1405-1415, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695637

RESUMEN

Novel druggable targets have been discovered in neuroblastoma (NB), paving the way for more effective treatments. However, children with high-risk NB still show high mortality rates prompting for a search of novel therapeutic options. Here, we aimed at repurposing FDA-approved drugs for NB treatment by performing a high-content screening of a 349 anticancer compounds library. In the primary screening, we employed three NB cell lines, grown as three-dimensional (3D) multicellular spheroids, which were treated with 10 µmol/L of the library compounds for 72 hours. The viability of 3D spheroids was evaluated using a high-content imaging approach, resulting in a primary hit list of 193 compounds. We selected 60 FDA-approved molecules and prioritized drugs with multi-target activity, discarding those already in use for NB treatment or enrolled in NB clinical trials. Hence, 20 drugs were further tested for their efficacy in inhibiting NB cell viability, both in two-dimensional and 3D models. Dose-response curves were then supplemented with the data on side effects, therapeutic index, and molecular targets, suggesting two multiple tyrosine kinase inhibitors, ponatinib and axitinib, as promising candidates for repositioning in NB. Indeed, both drugs showed induction of cell-cycle block and apoptosis, as well as inhibition of colony formation. However, only ponatinib consistently affected migration and inhibited invasion of NB cells. Finally, ponatinib also proved effective inhibition of tumor growth in orthotopic NB mice, providing the rationale for its repurposing in NB therapy. Mol Cancer Ther; 17(7); 1405-15. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Reposicionamiento de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Expresión Génica , Genes Reporteros , Humanos , Ratones , Neuroblastoma/tratamiento farmacológico , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto
11.
PLoS One ; 12(8): e0182589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28787011

RESUMEN

Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.


Asunto(s)
Antipsicóticos/farmacología , Clorpromazina/farmacología , Proteínas Priónicas/metabolismo , Antipsicóticos/metabolismo , Línea Celular , Clorpromazina/metabolismo , Dinaminas/antagonistas & inhibidores , Humanos , Ligandos , Mutación , Proteínas Priónicas/genética , Transporte de Proteínas/efectos de los fármacos
12.
Environ Microbiol ; 19(8): 3353-3364, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28654220

RESUMEN

Endophytic microorganisms asymptomatically colonise plant tissues. Exploring the assembly dynamics of bacterial endophytic communities is essential to understand the functioning of the plant holobiont and to optimise their possible use as biopesticides or plant biostimulants. The variation in endophytic communities in above and below-ground organs in Vitis vinifera in the field were studied. To understand the specific effect of temperature on endophytic communities, a separate experiment was set up where grapevine cuttings were grown under controlled conditions at three different temperatures. The findings revealed the succession of endophytic communities over the year. Endophytic communities of roots and stems differ in terms of composition and dynamic response to temperature. Noticeably, compositional differences during the seasons affected bacterial taxa more in stems than in roots, suggesting that roots offer a more stable and less easily perturbed environment. Correlation abundance networks showed that the presence of several taxa (including Bradyrhizobium, Burkholderia, Dyella, Mesorhizobium, Propionibacterium and Ralstonia) is linked in both the field and the greenhouse.


Asunto(s)
Endófitos/clasificación , Endófitos/crecimiento & desarrollo , Microbiota , Raíces de Plantas/microbiología , Vitis/microbiología , Bradyrhizobium/clasificación , Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/aislamiento & purificación , Burkholderia/clasificación , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación , Endófitos/aislamiento & purificación , Mesorhizobium/clasificación , Mesorhizobium/crecimiento & desarrollo , Mesorhizobium/aislamiento & purificación , Propionibacterium/clasificación , Propionibacterium/crecimiento & desarrollo , Propionibacterium/aislamiento & purificación , Ralstonia/clasificación , Ralstonia/crecimiento & desarrollo , Ralstonia/aislamiento & purificación , Estaciones del Año , Temperatura
13.
Oncotarget ; 7(18): 26551-66, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27034169

RESUMEN

The Yes-associated protein, YAP, is a transcriptional co-activator, mediating the Epithelial to Mesenchymal Transition program in pancreatic ductal adenocarcinoma (PDAC). With the aim to identify compounds that can specifically modulate YAP functionality in PDAC cell lines, we performed a small scale, drug-based screening experiment using YAP cell localization as the read-out. We identified erlotinib as an inducer of YAP cytoplasmic localization, an inhibitor of the TEA luciferase reporter system and the expression of the bona fide YAP target gene, Connective Tissue Growth Factor CTGF. On the other hand, BIS I, an inhibitor of PKCδ and GSK3ß, caused YAP accumulation into the nucleus. Activation of ß-catenin reporter and interfering experiments show that inhibition of the PKCδ/GSK3ß pathway triggers YAP nuclear accumulation inducing YAP/TEAD transcriptional response. Inhibition of GSK3ß by BIS I reduced the expression levels of SMADs protein and reduced YAP contribution to EMT. Notably, BIS I reduced proliferation, migration and clonogenicity of PDAC cells in vitro, phenocopying YAP genetic down-regulation. As shown by chromatin immunoprecipitation experiments and YAP over-expressing rescue experiments, BIS I reverted YAP-dependent EMT program by modulating the expression of the YAP target genes E-cadherin, vimentin, CTGF and of the newly identified target, CD133. In conclusion, we identified two different molecules, erlotinib and BIS I, modulating YAP functionality although via different mechanisms of action, with the second one specifically inhibiting the YAP-dependent EMT program in PDAC cell lines.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Indoles/farmacología , Maleimidas/farmacología , Neoplasias Pancreáticas/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Clorhidrato de Erlotinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Smad/biosíntesis , Factores de Transcripción , Proteínas Señalizadoras YAP
14.
Sci Rep ; 6: 22827, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26961006

RESUMEN

Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.


Asunto(s)
Colchicina/farmacología , Doxorrubicina/farmacología , Proteínas de Choque Térmico/biosíntesis , Neuronas Motoras/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/biosíntesis , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Autofagia , Línea Celular , Proteínas de Unión al ADN/biosíntesis , Demencia Frontotemporal/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Chaperonas Moleculares , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Fragmentos de Péptidos/biosíntesis , Pliegue de Proteína , Transcripción Genética
15.
Front Microbiol ; 6: 419, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074885

RESUMEN

Plant pathogens and endophytes co-exist and often interact with the host plant and within its microbial community. The outcome of these interactions may lead to healthy plants through beneficial interactions, or to disease through the inducible production of molecules known as virulence factors. Unravelling the role of virulence in endophytes may crucially improve our understanding of host-associated microbial communities and their correlation with host health. Virulence is the outcome of a complex network of interactions, and drawing the line between pathogens and endophytes has proven to be conflictive, as strain-level differences in niche overlapping, ecological interactions, state of the host's immune system and environmental factors are seldom taken into account. Defining genomic differences between endophytes and plant pathogens is decisive for understanding the boundaries between these two groups. Here we describe the major differences at the genomic level between seven grapevine endophytic test bacteria, and 12 reference strains. We describe the virulence factors detected in the genomes of the test group, as compared to endophytic and non-endophytic references, to better understand the distribution of these traits in endophytic genomes. To do this, we adopted a comparative whole-genome approach, encompassing BLAST-based searches through the GUI-based tools Mauve and BRIG as well as calculating the core and accessory genomes of three genera of enterobacteria. We outline divergences in metabolic pathways of these endophytes and reference strains, with the aid of the online platform RAST. We present a summary of the major differences that help in the drawing of the boundaries between harmless and harmful bacteria, in the spirit of contributing to a microbiological definition of endophyte.

16.
PLoS One ; 9(11): e112763, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25387008

RESUMEN

Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.


Asunto(s)
Bacterias/genética , Endófitos/fisiología , Consorcios Microbianos/fisiología , Control de Plagas , Vitis/microbiología , Burkholderia/genética , ADN Ribosómico , Italia , Pseudomonas/genética , Ralstonia/genética , Análisis de Secuencia de ADN/métodos
17.
Front Microbiol ; 5: 327, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071740

RESUMEN

Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

18.
Appl Environ Microbiol ; 80(12): 3585-96, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682305

RESUMEN

The phyllosphere is colonized by complex microbial communities, which are adapted to the harsh habitat. Although the role and ecology of nonpathogenic microorganisms of the phyllosphere are only partially understood, leaf microbiota could have a beneficial role in plant growth and health. Pesticides and biocontrol agents are frequently applied to grapevines, but the impact on nontarget microorganisms of the phyllosphere has been marginally considered. In this study, we investigated the effect of a chemical fungicide (penconazole) and a biological control agent (Lysobacter capsici AZ78) on the leaf microbiota of the grapevine at three locations. Amplicons of the 16S rRNA gene and of the internal transcribed spacer were sequenced for bacterial and fungal identification, respectively. Pyrosequencing analysis revealed that the richness and diversity of bacterial and fungal populations were only minimally affected by the chemical and biological treatments tested, and they mainly differed according to grapevine locations. Indigenous microbial communities of the phyllosphere are adapted to environmental and biotic factors in the areas where the grapevines are grown, and they are resilient to the treatments tested. The biocontrol properties of phyllosphere communities against downy mildew differed among grapevine locations and were not affected by treatments, suggesting that biocontrol communities could be improved with agronomic practices to enrich beneficial populations in vineyards.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Lysobacter/fisiología , Microbiota , Hojas de la Planta/microbiología , Vitis/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Ecosistema , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/genética , Fungicidas Industriales/farmacología , Microbiota/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos
19.
Mol Biol Evol ; 31(5): 1059-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24554779

RESUMEN

Here, we report the surprising and, to our knowledge, unique example of horizontal interkingdom transfer of a human opportunistic pathogen (Propionibacterium acnes) to a crop plant (the domesticated grapevine Vitis vinifera L.). Humans, like most organisms, have established a long-lasting cohabitation with a variety of microbes, including pathogens and gut-associated bacteria. Studies which have investigated the dynamics of such associations revealed numerous cases of bacterial host switches from domestic animals to humans. Much less is, however, known about the exchange of microbial symbionts between humans and plants. Fluorescent in situ hybridization localized P. acnes in the bark, in xylem fibers, and, more interestingly, inside pith tissues. Phylogenetic and population genetic analyses suggest that the establishment of the grapevine-associated P. acnes as obligate endophyte is compatible with a recent transfer event, likely during the Neolithic, when grapevine was domesticated.


Asunto(s)
Acné Vulgar/microbiología , Endófitos/aislamiento & purificación , Propionibacterium acnes/genética , Propionibacterium acnes/aislamiento & purificación , Vitis/microbiología , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Endófitos/genética , Evolución Molecular , Genes Bacterianos , Humanos , Hibridación Fluorescente in Situ , Filogenia , Propionibacterium acnes/fisiología , Rec A Recombinasas/genética , Especificidad de la Especie , Simbiosis/genética
20.
Appl Environ Microbiol ; 78(12): 4308-17, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492448

RESUMEN

We studied the distribution of fungal endophytes of grapevine (Vitis vinifera L.) plants in a subalpine area of northern Italy, where viticulture is of high economic relevance. We adopted both cultivation-based and cultivation-independent approaches to address how various anthropic and nonanthropic factors shape microbial communities. Grapevine stems were harvested from several locations considering organic and integrated pest management (IPM) and from the cultivars Merlot and Chardonnay. Cultivable fungi were isolated and identified by internal-transcribed-spacer sequence analysis, using a novel colony-PCR method, to amplify DNA from fungal specimens. The composition of fungal communities was assessed using a cultivation-independent approach, automated ribosomal intergenic spacer analysis (ARISA). Multivariate statistical analysis of both culture-dependent and culture-independent data sets was convergent and indicated that fungal endophytic communities in grapevines from organically managed farms were different from those from farms utilizing IPM. Fungal communities in plants of cv. Merlot and cv. Chardonnay overlapped when analyzed using culture-dependent approaches but could be partially resolved using ARISA fingerprinting.


Asunto(s)
Biota , Endófitos/clasificación , Endófitos/aislamiento & purificación , Hongos/clasificación , Hongos/aislamiento & purificación , Vitis/microbiología , Agricultura/métodos , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Italia , Filogenia , Tallos de la Planta/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...